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Abstract: The mutual relationship among daily averaged PM10, PM2.5, and NO2 concentrations in
two megacities (Seoul and Busan) connected by the busiest highway in Korea was investigated using
an artificial neural network model (ANN)-sigmoid function, for a novel coronavirus (COVID-19)
pandemic period from 1 January to 31 December 2020. Daily and weekly mean concentrations of
NO2 in 2020 under neither locked down cities, nor limitation of the activities of vehicles and people
by the Korean Government have decreased by about 15%, and 12% in Seoul, and Busan cities, than
the ones in 2019, respectively. PM 10 (PM2.5) concentration has also decreased by 15% (10%), and
12% (10%) in Seoul, and Busan, with a similar decline of NO2, causing an improvement in air quality
in each city. Multilayer perception (MLP), which has a back-propagation training algorithm for a
feed-forward artificial neural network technique with a sigmoid activation function was adopted to
predict daily averaged PM10, PM2.5, and NO2 concentrations in two cities with their interplay. Root
mean square error (RMSE) with the coefficient of determination (R2) evaluates the performance of the
model between the predicted and measured values of daily mean PM10, PM2.5, and NO2, in Seoul
were 2.251 with 0.882 (1.909 with 0.896; 1.913 with 0.892), 0.717 with 0.925 (0.955 with 0.930; 0.955 with
0.922), and 3.502 with 0.729 (2.808 with 0.746; 3.481 with 0.734), in 2 (5; 7) nodes in a single hidden
layer. Similarly, they in Busan were 2.155 with 0.853 (1.519 with 0.896; 1.649 with 0.869), 0.692 with
0.914 (0.891 with 0.910; 1.211 with 0.883), and 2.747 with 0.667 (2.277 with 0.669; 2.137 with 0.689),
respectively. The closeness of the predicted values to the observed ones shows a very high Pearson r
correlation coefficient of over 0.932, except for 0.818 of NO2 in Busan. Modeling performance using
IBM SPSS-v27 software on daily averaged PM10, PM2.5, and NO2 concentrations in each city were
compared by scatter plots and their daily distributions between predicted and observed values.

Keywords: artificial neural network model; COVID-19 pandemic; air quality; PM10; PM2.5; NO2; root
mean square error; coefficient of determination

1. Introduction

Since the first patient of COVID-19 (Corona virus disease 2019) of unknown origin
was first reported by the National Health Commission of the People’s Republic of China
(NHC) on 31 December 2019 [1], and month after month, a dramatic increase in the
number of COVID-19 patients was found, the Chinese government officially closed urban
transportation system in Wuhan on 23 January 2020, and all 31 provincial regions in
Chinese mainland began initiating their first-level response to a significant public health
emergency [2]. Thereafter, WHO [3] indicated that the global pandemic of COVID has
continued even until 2022, and COVID-19 has rapidly spread out all over the world with a
total accumulative number of patients exceeding 90,000 in China to 7,000,000 in the world
until July 2020.

In China [4–13], India [14–17], European countries of Italy and Spain [18–21], and
the USA [22], the lockdown introduced to stop the spread of COVID-19 could result in
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a remarkable impact such as a decrease of industrial production and the restrictions on
social activities by no going out of the house, but resultantly, the strict implementation
of this measure by the Chinese government could improve urban air quality state by
reducing pollutant emissions from vehicles on the road and factories in the industrial
regions. Similarly, the occurrence of improved urban air quality state was found during the
2008 Beijing Olympic Games [23,24], Asia-Pacific Economy Cooperation (APEC)- China
Summit [25,26], and National holiday [27].

Even though most of the countries are locked down to prevent the spreading of this
disease inside their countries, in contrast, only one country, South Korea has made an effort
for overcoming the spread of this disease with no lockdown in any cities (Figure 1). After
the first patient was found in February 2020 in Korea, the total accumulative number of
patients infected from COVID-19 exceeded 415,000 with the death of 3274 persons and a
weekly average of 2852 patients with a dramatic increase of COVID-19 patient number
under the increase of virus variants until December 2021 [28–30]. However, this measure
by the Korean government without any restriction on social activity, public and private
transportation and even no entry ban for foreigners, which was different from the strict
Chinese measure like a lockdown of the society have successfully controlled the spreading
of COVID-19 epidemic inside Korea, no showing a dramatic increase of COVID patients,
compared to any other advanced countries such as European countries having a similar
population of Korea [31].

Korean government’s treatment to successfully control COVID-19 epidemic inside
Korea is as follows. The Korean government has increased the vaccination rate of all
citizens to more than 90% to prevent the spread of COVID-19. As South Korea has the
largest number of hospitals relative to its population in the world, medical insurance is
provided to all citizens 100%, free vaccination 4 times (every 3 months), free admission to
the hospital by ambulance by the 119-patient transportation system in case of a patient,
and treatment until the patient is completely cured [30].

Similar to the improvement of urban air quality in mega cities in China, European
countries, and India during a COVID-19 pandemic period, it was found that the concentra-
tions of major air pollutants such as PM10, PM2.5, and NO2 in megacities (Seoul and Busan)
of South Korea decreased in 2020 rather than in 2019 with no COVID-19 pandemic, due to
the people themselves limiting social activities and reducing the operation of automobiles,
resulting in the improvement of air quality. For example, the reduction rates of NO2, PM10,
and PM2.5 concentrations in Seoul (Busan) in South Korea were 15% (12%), 15% (10%),
and 12% (10%), respectively, as shown later, while the rates of NO2, and PM2.5 in Wuhan,
China were 53% and 35% [13], with their different reduction rates of pollution in different
countries, respectively.

The objective of this study is to derive a practical formula for the prediction of air
quality such as representative air pollutants of PM10, PM2.5, and NO2, using an artificial
neural network model (ANN)-sigmoid activation function (Figure 2), and to know how
much three pollutant concentrations in one city can affect the concentrations in another city
between two megacities of Seoul and Busan for a COVID-19 pandemic period of 2020. The
measured values of air pollutant variables were compared with the predicted values by the
ANN model with different nodes in its hidden layer using SPSS-v27 software.

2. Materials and Methods
2.1. Study Location

Seoul inside Gyeonggi province is the capital and largest metropolis of South Korea.
Seoul has a population of 10.5 million people in the heart of the Seoul Capital Area. How-
ever, the population of a great Seoul is about 25 million people including the surrounding
8 satellite cities, and it covers about half of the total population of 52 million in South
Korea (Figure 1). Seoul proper comprises 605.25 km2 with a radius of approximately 15 km,
roughly bisected into northern and southern halves by the Han River. The latitude of Seoul
is 37.533◦ N, and the longitude is 127.025◦ E.
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Busan inside Kyungnam province officially known as Busan Metropolitan City is
South Korea’s second-most populous city after Seoul, with a population of over 3.7 mil-
lion inhabitants, but its population is about 8 million people including the people of the
surrounding 3 satellite cities. Busan covers an area of 765.82 km2 and is the biggest port
city in South Korea. It is an important business, sports, and cultural hub, as well as the
second most crowded city after Seoul. Located on the shores of the Korea Strait, the city is
one of the major ports and a key transport knot. Its latitude and longitude coordinates are
35.167◦ N, and 129.067◦ E. Seoul and Busan in South Korea are connected by the busiest
highway of about 430km on which a huge number of vehicles move.

For the period of the COVID-19 pandemic of 2020, PM10, PM2.5, and NO2 concentra-
tions in the two cities were much reduced compared with those concentrations of 2019, and
those concentrations in the two cities showed similar patterns. A more detailed analysis of
those pollutant concentrations, considering their mutual relation in the two cities in 2020
is given later.
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Figure 1. Location of two megacities, Seoul and Busan (colorful districts) on the left of S, and B which
are connected with the busiest highway of about 430km in South Korea.

2.2. Air Quality Data Analysis

The characteristics in daily and weekly temporal variations and spatial distribution
of NO2 and PM10, PM2.5 concentrations were further investigated in these cities. This
study could have considerable implications for air pollution control in the megacities of
Korea. More details of the specifications and procedures of the measurements for daily air
quality data supplied by Korea Environment Corporation (KEC) are listed on the website.
(https://www.airkorea.or.kr/web) (accessed on 10 January 2021) [32]. In this study, daily
mean concentrations of nitrogen dioxide (NO2) and particulate matter with an aerodynamic
diameter of fewer than 2.5 µm (PM2.5) particulate matter with an aerodynamic diameter of
fewer than 10 µm (PM10) at Seoul and Busan cities were obtained from the KEC. The data
of air quality have each unit as ppm × 1000 for NO2 concentration, µg/m3 for PM10 and
PM2.5 concentrations.

In another way, each researcher can download air quality data without any restric-
tions after registering personal information through the National Institute of Environ-

https://www.airkorea.or.kr/web
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mental Research (NIER), the Ministry of Environment of the Korean Government with
a website address as https://www.nier.go.kr/NIER/kor/openapi/ (accessed on 10 Jan-
uary 2021) [33]. Especially, all kinds of information on the COVID-19 epidemic to the
public are supplied in real-time by the Korea Disease Control and Prevention Agency
(KDCPA) (accessed on 10 January 2021) [30], such as the information on the nationwide
supply and demand of the coronavirus vaccine, the date of individual vaccination, the
number of infected patients and the number of deaths and others through a website,
https://www.kdca.go.kr/index.es?sid=a3 (accessed on 10 January 2021). For this study,
the daily number of patients infected by the COVD-19 epidemic in two megacities was
obtained by https://www.seoul.go.kr/coronaV/coronaStatus.do (accessed on 10 January
2021) for Seoul, and https://www.busan.go.kr/covid19/Status01.do (access on 10 January
2021) for Busan.

2.3. Artificial Neural Network (ANN)Model—Machine Learning Model

A machine learning multilayer perceptron (MLP) with a forward artificial neural
network is adopted among some of the ANN topologies available in the literature, in order
to predict daily mean concentrations of particulate matter (PM10, PM2.5) and nitrogen
dioxide (NO2) in two cities. The ANN model using the MLP is trained with the back-
propagation training algorithm for feed-forward ANN [34], and it consists of an input
layer, a hidden layer, and an output layer. Each layer processes the input data through the
activation function.
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consists of several processing elements that receive inputs and deliver outputs based on
their predefined activation functions.

A multilayer artificial neuron network is an integral part of deep learning. MLP is
particularly useful in modeling to resolve a complex problem. Figure 2 illustrates the
structure of MLP which consists of an input layer, a hidden layer, and an output layer.
Input signals are multiplied by a set of weights as they are sent to the output layer through
the hidden layer. For the calculation of the output of neurons from both the input layer to
the hidden layer and the hidden layer to the output layer, a feed-forward artificial neural
network with sigmoid activation function such as Equations (2) and (3) was adopted in
two kinds of transferring process as a typical nonlinear function.

The database used for the ANN model development comprises a total of 2196 hourly
averaged data on 3 variables (PM10, PM2.5, and NO2) of two cities for 366 days. The ranges
of data used for the input and output variables are summarized in Table 1. The available
data were divided into three sets such as training, testing, and validation for their statistical
consistency. 60%, 20%, and 20% of the total data in this study were randomly split for
training, testing, and validation, similar to Choi [36], respectively. Before presenting the
input and output variables for the ANN model training, they were scaled between 0.0 and
1.0 to eliminate their dimension, using Equation (1) and to ensure that all variables receive
equal attention during training.

We adopted the simple linear mapping of the variables’ practical extremes to the neural
network’s practical extremes for data scaling suggested by Masters [37], Shahin, et al. [35],
and Choi [36], because it is used as the most common method. For instance, in the case of
each variable x with maximum and minimum values of xmax and xmin, the scaled value xn
is calculated by

xn =
(x − xmin)

(xmax − xmin)
(1)

Similar to the way performed by Shahin et al. [35], and Choi [36], we determined an
optimal model structure using a trial-and-error approach in which the ANN models were
trained using one hidden layer with 2, 5, and 7 nodes, respectively.

The output of neuron j (yj) in the typical MLP with a single hidden layer can be
modeled by an activation function. Generally, the actuation function contains a multivariate
linear function, an exponential function like a sigmoid, and a s-shaped function like a
hyperbolic tangent. Among them, we adopted sigmoid as a typical nonlinear activation
function for the calculation of the output of neurons by Equations (2) and (3), suggested by
Choi [36], and the final output (y11) of the neuron in the output layer can also be calculated
by a sigmoid activation function.

The output of neuron j is given by

yj = f
(

θj + ∑p
j=6 wi,jxi

)
(2)

yj = f (x) = sigmoid(x) =
1

(1 + exp(−x))
(3)

where f , θ, xi, yj and w, are the activation function (or transfer function; here, sigmoid),
bias (unit), input data, output of neuron, and weight coefficients. In the case of 5 neurons,
the different weights are given not only form 5 input data to each neuron on 5 units in a
single hidden layer, but also given from 5 units in the hidden layer to 1 unit in the output
layer, which control the contribution of neuron, by carrying out back-propagation to adjust
weights in a neural network. Here, i (j) is in the range of 1 to p (6 to p), which is 8 (11 and
13) in 2 (5 and 7) nodes in the hidden layer, and an output from one layer is an input into
the next layer.

In the case of five input data, the output of each neuron on five units in the hidden
layer and one unit in the output layer can be written, as below. It means that using input
data of x1 to x5, the outputs of neurons x6 to x10, such as y6 to y10 in the hidden layer are
calculated by
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y6 =
1

1 + exp[−( θ6 + W16 x1 + W26 x2 + W36 x3 + W46 x4 + W56 x5)]
(4)

y7 =
1

1 + exp[−( θ7 + W17 x1 + W27 x2 + W37 x3 + W47 x4 + W57 x5)]
(5)

y8 =
1

1 + exp[−( θ8 + W18 x1 + W28 x2 + W38 x3 + W48 x4 + W58 x5)]
(6)

y9 =
1

1 + exp[−( θ9 + W19 x1 + W29 x2 + W39 x3 + W49 x4 + W59 x5)]
(7)

y10 =
1

1 + exp[−( θ10 + W110 x1 + W210 x2 + W310 x3 + W410 x4 + W510 x5)]
(8)

where input variables of x1, x2, x3, x4, and x5 denote the concentrations of PM2.5 and NO2
at Seoul city, and PM10, PM2.5, and NO2 at Busan city. The outputs of neurons x11, that is,
y11 as PM10 at Seoul city in the output layer, using output values (y6 to y10) of x6 to x10 in
the hidden layer are calculated by

y11 =
1

1 + exp[−( θ11 + W611 y 6 + W711 y7 + W811 y8 + W911 y9 + W1011 y10)]
(9)

In the training architecture of the ANN model, the initial values of lambda and sigma
are 0.0000005 and 0.00005.

Previously, before using Equations (2) and (3), all input variables were scaled between
0.0 to 1.0 using Equation (1) in the range between the maximum and minimum values of
the input data. As the calculated values from Equation (9) were scaled between 0.0 and
1.0, these calculated values should be re-scaled again for obtaining the actual values, using
Equation (1), after the calculation of output in the output layer. In the case of seven
units (nodes) in the hidden layer and one unit in the output layer can be written slightly
differently from the case of five nodes in the hidden layer like y13.

3. Results
3.1. Temporal Variations of PM10, PM2.5, and NO2 Concentrations at Two Cities

Figure 3 shows the temporal variations of daily and weekly mean values of PM10,
PM2.5, and NO2 concentrations from 1 January to 31 December 31 2019 (one year before the
COVID-19 pandemic) and 2020 (during the COVID-19 pandemic) in Seoul (the capital city)
and Busan (the second largest city) in Korea. In order to give the importance of the NO2
concentration similar to the PM10 and PM2.5 concentrations, the NO2 concentration was
used by multiplying it by 1000 in our ANN models.

Even though the variation tendency of the daily average of PM10, PM2.5, and NO2
concentration in Busan city is similar to that in Seoul city, their magnitudes in Busan were
much smaller than those in Seoul city. It may be attributed to the different populations of
two cities such as about 7 million (Busan) with its suburban cities and 25 million (Seoul)
with surrounding satellite cities.
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Figure 3. Temporal variations of measured daily and seven days averaged concentrations of
PM10 (µg/m3), PM2.5 (µg/m3), and NO2 (ppm ×1000) before (2019) and during the COVID-19
epidemic year (2020) in Seoul and Busan cities, Korea.

Weekly mean values of PM10, PM2.5, and NO2 concentrations in Seoul have similar
tendencies to their daily mean values in 2019 and 2020 in Seoul and Busan. Daily and
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weekly mean concentrations of NO2 in 2020 have slightly decreased by about 15% (Seoul),
and 12% (Busan), compared to ones in 2019, respectively. PM10 (PM2.5) concentration
has also decreased by 15% (10%) in Seoul, and 12% (10%) in Busan, showing a similar
significant decline of NO2. These reduction patterns of PM2.5 and NO2 concentration in two
cities with much lower concentrations were similar to Wuhan, Hubei (Wuhan excluded),
and China (Hubei excluded), where the first infected patient was found [38].

It was known that a concurrent significant change in air pollutant concentrations
in China was with the introduction of control measures and societal lockdowns to limit
COVID-19 spread. Chu, et al. [13], and Wang, et al. [39] insisted that especially, the
reduction of NO2 was attributed to the significant reductions (40~80%) of city traffic in
eastern and northern China during the COVID-19 epidemic.

Different from the Chinese government, the Korean government neither locked down
cities, nor the limitation of the activities of vehicles and people, but individuals over-
all restrained their activities, resulting in a slight decrease of over 10% in air pollutant
concentrations in 2020, and the improvement of air quality in each city.

3.2. Evaluation of Daily Mean PM10 and PM2.5, and NO2 Concentrations Using an ANN Model

For model training, testing, and validation, daily mean data of PM10, PM2.5, and NO2
concentrations for one year was divided into two datasets. Initial 60% of the data was
utilized for the development of ML models as training, 20% for testing the model, and the
rest 20% was used for the model assessment (validation), similar to the performance by
Shahin, et al. [35], Nawras and Hani [40], and Choi [36].

For the calculation of PM10 (Seoul), not only PM2.5 (Seoul), and NO2 (Seoul) in Seoul
city, but also PM10 (Busan), PM2.5 (Busan), and NO2 (Busan) in Busan city were used as
input data for the development of the MLP model. In order to calculate another variable, the
remaining variables were used as input data and performed in the same way sequentially.

Tables 1–3 indicate the weights and threshold values for different nodes such as 2, 5,
and 7 in a single hidden layer for the prediction of PM10, PM2.5, and NO2 concentrations
transferred by a sigmoid activation function of the ANN model from the input layer to
the hidden layer and from the hidden layer to the output layer, respectively, in detail. For
instance, the output PM10 (y11) at Seoul in a case of 5 nodes of the hidden layer can be
calculated using output values of y6 to y10, as below.

The performance of the neural network is analyzed by differing the number of neurons
in the hidden layer such as 2, 5, and 7, here, and recording the respective statistical
indicators. Neural Network application in SPSS-version 27 was adopted to design, train
and validate the neural network model. As the most well-known feed-forward network, the
MLP of which the back-propagation algorithm for error calculation is utilized to train the
network is adopted in the current study of the ANN model. The model training terminates,
when the generalization demonstrated by an increase in the mean square error (MSE) and
the corresponding decrease in R2 stops its improvement.

Namely, the loss function (or coast function) expressed by the mean square error
formula (MSE) as shown in Equation (17) is used to calculate the error between the output
value (predicted value) and the measured value (true value) in the back-propagation
algorithm. If the predicted value is not close to the measured value, it goes back to the
ANN model circuit and adjusts the weight again. Then it goes through the hidden layer
again to the output layer, calculating the output value in the output layer. If the output
value is very close to the measured value, the calculation of the output value is terminated.
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Table 1. Parameter estimates of weights and threshold values in the case of 2 nodes in one hidden
layer in Seoul and Busan cities.

Parameter Estimates-PM10(Seoul)-Node=2 Parameter Estimates-PM10(Busan)-Node=2

Hidden Layer 1 Output
Layer Hidden Layer 1 Output

Layer

Predictor H(1:1) H(1:2) PM10_S Predictor H(1:1) H(1:2) PM10_B

Input
Layer

(Bias) −0.297 −0.051

Input
Layer

(Bias) 0.458 0.230

PM2.5_S 1.201 −0.871 PM2.5_B −1.278 −1.130

NO2_S −0.334 −0.187 NO2_B 0.076 0.206

PM10_B 0.337 −1.408 PM10_S −1.154 −0.949

PM2.5_B −0.669 0.915 PM2.5_S 1.423 0.512

NO2_B 0.196 −0.059 NO2_S −0.063 −0.145

Hidden
Layer 1

(Bias) 0.189
Hidden
Layer 1

(Bias) 2.200

H(1:1) 2.262 H(1:1) −2.381

H(1:2) −2.269 H(1:2) −1.400

Parameter Estimates-PM2.5(Seoul)-Node=2 Parameter Estimates-PM2.5(Busan)-Node=2

Hidden Layer 1 Output
Layer Hidden Layer 1 Output

Layer

Predictor H(1:1) H(1:2) PM2.5_S Predictor H(1:1) H(1:2) PM2.5_B

Input
Layer

(Bias) 0.194 −1.107

Input
Layer

(Bias) −1.298 0.002

PM10_S −1.778 −0.262 PM10_B 0.906 3.675

NO2_S 0.427 0.947 NO2_B 0.161 2.252

PM10_B 1.142 0.298 PM10_S −1.083 1.542

PM2.5_B −0.659 0.652 PM2.5_S 0.986 2.774

NO2_B 0.122 −0.037 NO2_S −0.089 1.139

Hidden
Layer 1

(Bias) 0.925
Hidden
Layer 1

(Bias) −1.389

H(1:1) −2.784 H(1:1) 4.984

H(1:2) 2.062 H(1:2) 0.386

Parameter Estimates-NO2(Seoul)-Node=2 Parameter Estimates-NO2(Busan)-Node=2

Hidden Layer 1 Output
Layer Hidden Layer 1 Output

Layer

Predictor H(1:1) H(1:2) NO2_S Predictor H(1:1) H(1:2) NO2_B

Input
Layer

(Bias) 0.194 −0.754

Input
Layer

(Bias) 0.026 1.537

PM10_S −0.850 0.039 PM10_B 0.056 −0.118

PM2.5_S −0.492 0.725 PM2.5_B −0.840 −1.292

PM10_B −0.047 −0.388 PM10_S 0.116 0.035

PM2.5_B −0.082 −0.222 PM2.5_S 0.162 0.636

NO2_B −1.174 1.142 NO2_S −2.019 −1.376

Hidden
Layer 1

(Bias) −0.538
Hidden
Layer 1

(Bias) 1.670

H(1:1) −0.635 H(1:1) −0.871

H(1:2) 2.501 H(1:2) −1.657
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Table 2. As shown in Table 1, except for 5 nodes in a single hidden layer in Seoul and Busan cities.

Parameter Estimates-PM10(Seoul)-Node=5 Parameter Estimates-PM10(Busan)-Node=5

Hidden Layer 1 Output
Layer Hidden Layer 1 Output

Layer

Predictor H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) PM10_S Predictor H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) PM10_B

Input
Layer

(Bias) 0.498 0.155 −0.241 0.029 −0.408

Input
Layer

(Bias) −0.370 −0.670 0.032 0.157 −0.132

PM2.5_S −0.804 −1.172 −0.598 1.131 0.649 PM2.5_B −0.895 0.827 0.681 −0.812 0.937

NO2_S 0.198 0.070 −0.097 −0.024 −0.031 NO2_B −0.023 −0.198 −0.008 −0.197 0.086

PM10_B −0.133 −0.882 −0.237 1.081 0.424 PM10_S 0.273 1.460 0.448 −0.379 −0.436

PM2.5_B 0.107 0.700 0.352 −1.068 −0.356 PM2.5_S 0.061 −1.192 0.788 −0.401 −0.044

NO2_B 0.086 0.318 −0.392 0.246 0.135 NO2_S 0.026 0.212 0.441 0.099 −0.406

Hidden
Layer 1

(Bias) 0.134

Hidden
Layer 1

(Bias) −1.184

H(1:1) −0.485 H(1:1) −0.766

H(1:2) −1.284 H(1:2) 3.524

H(1:3) −0.522 H(1:3) −0.108

H(1:4) 1.585 H(1:4) −0.296

H(1:5) 0.789 H(1:5) 1.009

Parameter Estimates-PM2.5(Seoul)-Node=5 Parameter Estimates-PM2.5(Busan)-Node=5

Hidden Layer 1 Output
Layer Hidden Layer 1 Output

Layer

Predictor H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) PM2.5_S Predictor H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) PM2.5_B

Input
Layer

(Bias) −0.075 −0.861 1.332 −0.173 −0.923

Input
Layer

(Bias) 0.145 −0.104 −0.383 −1.881 −0.312

PM10_S −0.312 0.518 −0.238 1.866 1.008 PM10_B 1.510 0.240 −0.865 0.742 −0.021

NO2_S 1.090 0.103 −0.708 −1.181 0.012 NO2_B 0.220 0.246 −0.199 0.288 −0.019

PM10_B 0.140 −1.284 0.430 −0.397 −0.576 PM10_S 0.095 −0.237 0.360 −1.573 0.261

PM2.5_B 0.607 0.880 −0.729 0.009 0.511 PM2.5_S −0.176 0.857 −0.228 1.482 0.279

NO2_B −0.039 0.156 0.398 0.032 −0.136 NO2_S −0.040 0.120 −0.244 −0.527 −0.268
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Table 2. Cont.

Hidden
Layer 1

(Bias) −0.892

Hidden
Layer 1

(Bias) −1.361

H(1:1) 1.202 H(1:1) 1.175

H(1:2) 1.277 H(1:2) 1.066

H(1:3) −1.468 H(1:3) −0.756

H(1:4) 1.652 H(1:4) 3.134

H(1:5) 0.936 H(1:5) 0.256

Parameter Estimates-NO2(Seoul)-Node=5 Parameter Estimates-NO2(Busan)-Node=5

Hidden Layer 1 Output
Layer Hidden Layer 1 Output

Layer

Predictor H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) NO2_S Predictor H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) NO2_B

Input
Layer

(Bias) 0.134 −0.003 −0.774 −0.273 0.069

Input
Layer

(Bias) −0.186 −0.031 0.003 −0.432 −0.181

PM10_S −0.392 −0.450 −0.133 −0.536 −0.224 PM10_B 0.281 −0.002 −0.158 0.032 0.274

PM2.5_S −0.307 0.465 0.804 0.043 −0.484 PM2.5_B −0.660 0.574 0.410 0.751 −0.366

PM10_B 0.152 0.234 0.207 0.493 −0.281 PM10_S −0.531 0.080 0.069 −0.088 0.518

PM2.5_B 0.347 −0.574 −0.377 −0.242 0.508 PM2.5_S −0.668 0.464 −0.084 −0.478 0.011

NO2_B −0.743 0.957 0.859 −0.502 −0.314 NO2_S −0.317 1.006 0.797 1.010 0.231

Hidden
Layer 1

(Bias) −0.075

Hidden
Layer 1

(Bias) −1.357

H(1:1) −0.973 H(1:1) −0.199

H(1:2) 1.219 H(1:2) 0.590

H(1:3) 1.319 H(1:3) 0.872

H(1:4) −0.406 H(1:4) 1.816

H(1:5) −0.558 H(1:5) 0.091
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Table 3. As shown in Table 1, except for 7 nodes in a single hidden layer in Seoul and Busan cities.

Parameter Estimates-PM10(Seoul)-Node=7 Output
Layer

Parameter Estimates-PM10(Busan)-Node=7 Output
LayerHidden Layer 1 Hidden Layer 1

Predictor H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) H(1:6) H(1:7) PM10_S Predictor H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) H(1:6) H(1:7) PM10_B

Input
Layer

(Bias) 0.477 0.337 −0.379 −0.192 −0.023 −0.369 0.068

Input
Layer

(Bias) 1.069 −0.770 −0.648 0.176 0.307 −0.285 −1.063

PM2.5_S −0.046 0.445 −0.709 −0.958 1.011 0.947 −1.066 PM2.5_B −0.972 0.561 0.957 −0.128 0.522 −0.550 0.861

NO2_S −0.264 −0.220 0.151 −0.328 −0.277 0.075 −0.155 NO2_B 0.023 −0.111 0.020 −0.115 −0.241 −0.009 −0.008

PM10_B −0.422 0.248 −0.184 −0.387 0.122 0.880 −0.155 PM10_S −0.370 1.310 0.198 −0.987 −0.167 −0.603 0.964

PM2.5_B −0.085 −0.341 0.323 0.263 −0.149 −0.751 −0.087 PM2.5_S 1.345 −0.739 −0.304 0.105 −0.296 0.343 −0.919

NO2_B 0.444 −0.347 −0.050 −0.125 0.167 −0.102 −0.219 NO2_S −0.204 −0.276 0.152 −0.029 0.344 0.549 0.219

Hidden
Layer 1

(Bias) 0.200

Hidden
Layer 1

(Bias) −0.158

H(1:1) −0.355 H(1:1) −1.248

H(1:2) 0.561 H(1:2) 1.351

H(1:3) −0.710 H(1:3) 0.800

H(1:4) −0.909 H(1:4) −0.460

H(1:5) 0.625 H(1:5) 0.606

H(1:6) 1.277 H(1:6) −0.433

H(1:7) −0.798 H(1:7) 1.379

Parameter Estimates-PM2.5(Seoul)-Node=7 Output
Layer

Parameter Estimates-PM2.5(Busan)-Node=7 Output
LayerHidden Layer 1 Hidden Layer 1

Predictor H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) H(1:6) H(1:7) PM2.5_S Predictor H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) H(1:6) H(1:7) PM2.5_B

Input
Layer

(Bias) 0.363 −0.119 −0.245 0.004 −0.176 −0.594 −0.213

Input
Layer

(Bias) −0.212 0.242 −0.543 −0.006 −0.447 −0.372 0.151

PM10_S −0.919 0.202 −0.149 −1.127 −0.030 0.578 0.202 PM10_B 0.147 −1.131 1.127 −0.403 0.133 0.141 0.584

NO2_S −0.020 0.175 −0.341 0.245 −0.087 0.495 0.084 NO2_B 0.347 −0.176 0.275 −0.072 0.207 0.652 0.283

PM10_B 0.139 −0.450 0.397 0.272 −1.009 −0.614 −0.644 PM10_S −0.032 0.657 −1.120 0.207 −0.099 0.135 −0.763

PM2.5_B −0.637 0.265 −0.440 −0.235 0.005 0.800 0.627 PM2.5_S −0.706 −0.358 1.134 −0.551 0.479 0.163 0.418

NO2_B 0.170 0.101 −0.290 0.052 −0.710 −0.276 0.412 NO2_S −0.005 −0.116 −0.717 −0.225 −0.110 −0.115 0.423
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Table 3. Cont.

Hidden
Layer 1

(Bias) 0.636

Hidden
Layer 1

(Bias) −0.299

H(1:1) −1.669 H(1:1) −0.587

H(1:2) 0.361 H(1:2) −1.098

H(1:3) −0.812 H(1:3) 1.861

H(1:4) −1.468 H(1:4) −0.545

H(1:5) 0.876 H(1:5) 0.448

H(1:6) 1.242 H(1:6) 0.242

H(1:7) 0.859 H(1:7) 0.892

Parameter Estimates-NO2(Seoul)-Node=7 Output
Layer

Parameter Estimates-NO2(Busan)-Node=7 Output
LayerHidden Layer 1 Hidden Layer 1

Predictor H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) H(1:6) H(1:7) NO2_S Predictor H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) H(1:6) H(1:7) NO2_B

Input
Layer

(Bias) −0.442 0.873 −0.430 0.055 −0.550 0.693 0.240

Input
Layer

(Bias) −0.265 −0.560 −0.074 0.053 −0.428 0.474 −0.474

PM10_S 0.083 −0.136 −0.650 0.167 0.652 0.205 −0.238 PM10_B −0.024 −0.357 0.178 0.927 −0.392 −0.156 0.044

PM2.5_S 0.287 −1.147 0.671 −0.039 0.391 −0.393 0.371 PM2.5_B −0.419 0.588 0.305 0.454 −0.533 0.450 0.464

PM10_B −0.234 0.469 0.448 −0.118 0.161 −0.231 0.085 PM10_S −0.152 −0.148 −0.156 0.793 −0.731 0.053 0.453

PM2.5_B 0.114 0.233 0.221 −0.090 −0.638 0.341 −0.864 PM2.5_S −0.729 −0.389 0.337 0.718 −0.859 −0.049 −0.604

NO2_B −0.180 −1.042 0.321 −0.272 0.851 −0.629 0.728 NO2_S −0.943 0.647 −0.037 1.443 −1.103 0.433 1.082

Hidden
Layer 1

(Bias) 0.164

Hidden
Layer 1

(Bias) −0.197

H(1:1) −0.045 H(1:1) −0.497

H(1:2) −1.189 H(1:2) 1.292

H(1:3) 0.638 H(1:3) −0.207

H(1:4) −0.130 H(1:4) −1.121

H(1:5) 0.921 H(1:5) −1.084

H(1:6) −0.697 H(1:6) 0.249

H(1:7) 1.009 H(1:7) 2.409
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In the case of 5 nodes in the hidden layer, input variables of x1, x2, x3, x4, and x5
denote the concentrations of PM2.5 and NO2 at Seoul, and PM10, PM2.5, and NO2 at Busan.
The outputs of neurons x11, namely, y11 as PM10 at Seoul city in the output layer, using
output values (y6 to y10) of x6 to x10 in the hidden layer are calculated as below.

y6 =
1

1 + exp [−( 0.498 − 0.804 x1 + 0.198 x2 − 0.133x3 + 0.107x4 + 0.086x5)]
(10)

y7 =
1

1 + exp [−( 0.155 − 1.172x1 + 0.07x2 − 0.882x3 + 0.70x4 + 0.318x5)]
(11)

y8 =
1

1 + exp [−(−0.241 − 0.598x1 − 0.097x2 − 0.237x3 + 0.352x4 − 0.392x5)]
(12)

y9 =
1

1 + exp [−(0.029 + 1.131x1 − 0.024x2 + 1.081x3 − 1.068x4 + 0.246x5)]
(13)

y10 =
1

1 + exp [−(−0.408 + 0.649x1 − 0.031x2 + 0.424x3 − 0.356x4 + 0.135x5)]
(14)

y11 =
1

1 + exp [−( 0.134 − 0.485y6 − 1.284y7 − 0.522y8 + 1.585y9 + 0.789y10)]
(15)

In a similar way, the outputs of neurons, y11 as PM2.5 and NO2 at Seoul city and PM10,
PM2.5, and NO2 at Busan city in the output layer, using different coefficients of output
values (y6 to y10) of x6 to x10 in the hidden layer of Table 2 be calculated.

In the case of 7 nodes in the hidden layer, input variables of x1, x2, x3, x4, and x5
denote the concentrations of PM2.5 and NO2 at Seoul city, and PM10, PM2.5, and NO2 at
Busan city. The outputs of neurons x13, namely, y13 as PM10 at Seoul city in the output
layer, using output values (y6 to y12) of x6 to x12 in the hidden layer are calculated.

3.3. Statistical Performance of the Optimal ANN Model with Data Sets of Training, Testing,
and Validation

As the predicted values of each variable calculated from Equation (11) were scaled
between 0.0 and 1.0, using Equation (1) before adopting machine learning techniques, these
values should be re-scaled again for obtaining the actual predicted values, using Equation
(1), after the calculation of output in the output layer. Then, these actual predicted values
were used for the comparison of measured values.

The result of the comparison of predicted and measured values of each variable in
the different nodes in the hidden layer was given in Figures 4–7 and Table 4 with root
mean square error (RMSE), mean square error (MSE), and coefficient of determination (R2),
which are utilized to evaluate the values of various variables by the following equations
suggested by Dhakal, et al. [41]

RMSE =

√
1
m ∑m

i=1(Yi − Xi)
2 (16)

MSE =
1
m ∑m

i=1(Yi − Xi)
2 (17)

R2 =

[
∑m

i=1
(
Xi − X

)(
Yi − Y

)]2
∑m

i=1
(
Xi − X

)2
∑m

i=1
(
Yi − Y

)2 (18)

where Xi, Yi, and m represent the measured and predicted values, and the number of data,
while X and Y represent the average measured and average estimated values.

Table 4 provides a summary of the statistical indicators for ANN models adopting
a sigmoid activation function from input to hidden layers. It shows the prediction per-
formance of the optimal ANN model in the cases of 2, 5, and 7 nodes in a single hidden
layer at two cities, and the validation of the predicted values to the measured values of
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PM10, PM2.5, and NO2 concentrations was presented by the statistical indicators such
as RMSE and R2.

For all data sets (training, testing, and validation), the models developed by us could
perform well in the prediction of dependent variables of PM10, PM2.5, and NO2 at Seoul
and Busan cities, even though NO2 concentration in Busan city had slightly lower R2 than
other concentrations. Among them, the ANN model with 5 hidden nodes was the best to
make the predicted values closest to the measured values, and with 7 hidden nodes was
next followed.

Focusing validation of the ANN model, coefficients of determination (R2; Pearson r2)
between the measured and the calculated values of daily mean PM10, PM2.5, and NO2 at
Seoul were 0.882 (0.896 and 0.892), 0.925 (0.930 and 0.922) and 0.729 (0.746 and 0.734), in
2 (5 and 7) nodes in a single hidden layer. The coefficients of PM10, PM2.5 and NO2 at Busan
were 0.853 (0.896 and 0.869), 0.914 (0.910 and 0.883) and 0.667 (0.669 and 0.689), respectively.
The closeness of the prediction to the observation that is given by R2 value shows greater
than 93.2% in PM10 and PM2.5, and 81.7% in NO2 in the two cities.

Prediction performance of the optimal ANN model in the different node numbers of 2,
5, and 7 in s single hidden layer at two cities was presented by RMSE and R2. Generally, a
lower RMSE value corresponds to better performance for the prediction. R2 indicates the
correlation coefficient of the dependent variables associated with an independent variable,
and its higher value shows better prediction. Thus, as higher R2 generally well correspond
to lower RMSE for all data sets (training, testing, and validation), the model developed by
us performed well in the prediction of dependent variables, and ANN with 5 nodes was
the best model in our study.

Table 4. Performance validation of the optimal ANN model with 2, 5, and 7 hidden layer nodes.
showing RMSE and R2.

Variables Hidden Neuron Numbers
RMSE R2

Training Testing Validation Training Testing Validation

PM10-Seoul
2 2.438 2.251 2.251 0.864 0.894 0.882
5 2.959 1.745 1.909 0.868 0.870 0.896
7 1.904 1.738 1.913 0.892 0.884 0.892

PM2.5-Seoul
2 1.076 1.511 0.717 0.921 0.900 0.925
5 0.836 1.193 0.955 0.932 0.904 0.930
7 0.847 1.196 0.955 0.938 0.905 0.922

NO2-Seoul
2 3.369 3.305 3.502 0.704 0.699 0.729
5 3.256 4.024 2808 0.720 0.685 0.746
7 3.032 3.456 3.481 0.722 0.722 0.734

PM10-Busan
2 1.772 1.774 2.155 0.855 0.864 0.853
5 1.392 2.155 1.519 0.896 0.866 0.896
7 1.392 1.645 1.649 0.901 0.878 0.869

PM2.5-Busan
2 0.951 1.056 0.692 0.896 0.894 0.914
5 0.609 1.995 0.891 0.934 0.850 0.910
7 0.607 1.127 1.211 0.940 0.878 0.883

NO2-Busan
2 2.606 2.740 2.747 0.617 0.621 0.667
5 2.205 2.594 2.277 0.667 0.623 0.669
7 2.140 2.284 2.137 0.680 0.663 0.689

3.4. Scatter Plots for the Performance of an Optimal ANN Model with Different Numbers of Nodes
in a Hidden Layer

Figures 4 and 5 illustrate scatter plots with the coefficients of R2 between daily mean
measured PM10, PM2.5, and NO2 concentrations and ones predicted by the ANN models
transferring by a sigmoid activation function from the input layer to the hidden layer and
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from the hidden layer to the output layer for 2, 5, and 7 neurons in the hidden layer at both
Seoul and Busan cities, respectively.
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NO2 (0.689 in 7 nodes) variables in Busan city. Thus, overall, it can be said that the 
predicted values in the five nodes of the hidden layer are the best validated.  

Figure 5. As shown in Figure 4, except for Busan city, Korea.

The linear least-square method is employed to fit the empirical coefficients obtained for
all variables by the ANN models. These scatter plots show that regardless of the number of
nodes in the hidden layer, the correlation coefficients between the predicted and measured
values had almost similar magnitudes. Among them, the highest correlation coefficients
between the predicted and measured values of all variables were found in the five nodes
of the hidden layer, except for the PM2.5 (0.914 in 2 nodes) and NO2 (0.689 in 7 nodes)
variables in Busan city. Thus, overall, it can be said that the predicted values in the five
nodes of the hidden layer are the best validated.
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Especially, correlation coefficients of NO2 concentrations in three kinds of hidden
nodes show slightly lower values of 0.667 (2 nodes), 0.669 (5 nodes), and 0.689 (7 nodes) than
other variables, and widely spreading data distributions from the regression lines. However,
the Pearson r regression coefficient exceeded 0.817 (R2; 0.667) in the NO2 concentrations in
both cities, having a maximum value of 0.864 (R2; 0.746) in Seoul.
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3.5. Sensitivity of the Performance of an Optimal ANN Model with Different Numbers of Nodes in
a Hidden Layer

The daily mean observed (measured) and calculated (predicted) values of PM10 (µg/m3),
PM2.5 (µg/m3), and NO2 (ppm ×1000) concentrations estimated by ANN models denote
the behavior throughout the one-year period from 1 January to 31 December 2020, as the
COVID-19 epidemic year (2020) in Seoul and Busan cities (Figures 6 and 7). The comparisons
between the predicted and measured values of PM10, PM2.5, and NO2 concentrations were
made using different numbers of hidden neurons-2, 5, and 7 in an ANN model-based a
sigmoid activation function.
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In Figure 6, daily variations in PM10, PM2.5, and NO2 concentrations were presented
in Seoul city, and their distributions show almost the same patterns and magnitudes in
three kinds of nodes, except for in May and June with much smaller predicted values than
the observed ones, in part.

The predicted values of PM10 in 2 and 5 nodes of the hidden layer reach nearly zero,
which is much deviated from the observed values to some extent, in late April, May, and
June, but the predicted values of PM10 in 7 nodes well match the observed ones without
showing zero value. Similarly, the predicted values of PM2.5 (NO2) in 5 nodes reach still
zero partially in May (May and June), but there are no zero values in the other two nodes.
However, in the daily distribution of NO2 concentration, the predicted values were overall
relatively smaller than the observed ones, regardless of the node number.

On the other hand, Figure 7 shows the predicted values of PM10 and PM2.5 concentra-
tions well reflected in their observed values with the almost same patterns and magnitudes
in three different kinds of nodes in Busan city in 2020. The predicted values of NO2 were
very close to the observed values with almost the same decreasing patterns, but with
slightly smaller predicted values. As result, through the comparison of the predicted and
observed values in Table 4 and Figures 6 and 7, the predicted values are generally well
reflected regardless of node numbers in the hidden layer.

4. Conclusions

The prediction of daily averaged PM10, PM2.5, and NO2 Concentrations between two
megacities without a lockdown of cities in Korea during the COVID-19 Pandemic Period
of 2020 was performed by Artificial neural network models (ANN)-sigmoid activation
function, and it gave the following results.

1. Daily and weekly mean concentrations of PM10 (PM2.5) in 2020 under neither
locked down cities, nor limitation of the activities of vehicles and people by the Korean
Government has slightly decreased by about 15% (10%) in Seoul city, and 12% (10%) in
Busan city, compared to ones in 2019, respectively. NO2 concentration has also decreased by
about 15% in Seoul, and 12% in Busan, showing a similar significant decline of PM10 (PM2.5),
resulting in more than 10% improvement in the air quality of each city.

2. The coefficients of determination (R2; (Pearson r)2) between the predicted values
of daily mean PM10, PM2.5, and NO2 using the ANN models with 2 (5 and 7) nodes in
a single hidden layer and their measured values in Seoul were 0.882 (0.896 and 0.892),
0.925 (0.930 and 0.922), and 0.729 (0.746 and 0.734), respectively.

3. The coefficients of determination in Busan in cases of 2 (5 and 7) hidden nodes were
0.853 (0.896 and 0.869), 0.914 (0.910 and 0.883), and 0.667 (0.669 and 0.689), showing slightly
lower coefficients than ones in Seoul.

4. The closeness of the prediction to the observation exceeds 0.932 of Pearson r in both
PM10 and PM2.5, and 0.817 in NO2 at two cities.

5. The artificial neural network models developed by us could perform well in the
prediction of dependent variables of PM10, PM2.5, and NO2 in Seoul and Busan cities, even
though NO2 concentration in Busan city had slightly lower R2 between the predicted and
observed values than PM10 and PM2.5 concentrations.

6. As a result, through scatter plots and temporal distributions of the predicted and
observed values of PM10, PM2.5, and NO2 concentrations, the predicted values are well
reflected in the observed values of each variable, regardless of node numbers in the hidden
layer. Overall, the ANN model with 5 hidden nodes was the best to make the predicted
values closest to the measured values, and 7 hidden nodes were next followed.
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